Extensions 1→N→G→Q→1 with N=C52 and Q=C2xD4

Direct product G=NxQ with N=C52 and Q=C2xD4
dρLabelID
D4xC5xC10200D4xC5xC10400,202

Semidirect products G=N:Q with N=C52 and Q=C2xD4
extensionφ:Q→Aut NdρLabelID
C52:(C2xD4) = C2xD5wrC2φ: C2xD4/C2D4 ⊆ Aut C52204+C5^2:(C2xD4)400,211
C52:2(C2xD4) = D5xD20φ: C2xD4/C4C22 ⊆ Aut C52404+C5^2:2(C2xD4)400,170
C52:3(C2xD4) = C20:D10φ: C2xD4/C4C22 ⊆ Aut C52404C5^2:3(C2xD4)400,171
C52:4(C2xD4) = C2xC52:2D4φ: C2xD4/C22C22 ⊆ Aut C5280C5^2:4(C2xD4)400,176
C52:5(C2xD4) = C2xC5:D20φ: C2xD4/C22C22 ⊆ Aut C5240C5^2:5(C2xD4)400,177
C52:6(C2xD4) = D5xC5:D4φ: C2xD4/C22C22 ⊆ Aut C52404C5^2:6(C2xD4)400,179
C52:7(C2xD4) = D10:D10φ: C2xD4/C22C22 ⊆ Aut C52204+C5^2:7(C2xD4)400,180
C52:8(C2xD4) = C10xD20φ: C2xD4/C2xC4C2 ⊆ Aut C5280C5^2:8(C2xD4)400,183
C52:9(C2xD4) = C2xC20:D5φ: C2xD4/C2xC4C2 ⊆ Aut C52200C5^2:9(C2xD4)400,193
C52:10(C2xD4) = C5xD4xD5φ: C2xD4/D4C2 ⊆ Aut C52404C5^2:10(C2xD4)400,185
C52:11(C2xD4) = D4xC5:D5φ: C2xD4/D4C2 ⊆ Aut C52100C5^2:11(C2xD4)400,195
C52:12(C2xD4) = C10xC5:D4φ: C2xD4/C23C2 ⊆ Aut C5240C5^2:12(C2xD4)400,190
C52:13(C2xD4) = C2xC52:7D4φ: C2xD4/C23C2 ⊆ Aut C52200C5^2:13(C2xD4)400,200


׿
x
:
Z
F
o
wr
Q
<